Code: 20IT2701A

IV B.Tech - I Semester - Regular Examinations - DECEMBER 2023

FUNDAMENTALS OF DATA SCIENCE (Common for ALL BRANCHES)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			DI	СО	Max.			
			BL		Marks			
	UNIT-I							
1	Exp	plain the steps involved in the process of data	L2	CO1	14 M			
	scie	ence project.						
OR								
2	Exp	plain with example on the sampling of data	L2	CO1	14 M			
	for	modeling and validation.						
UNIT-II								
3	Exp	plain about any 4 tasks that could be	L2	CO2	14 M			
	per	formed by machine learning algorithms. Give						
	suit	able example for each.						
OR								
4	a)	Explain about classification and any one	L2	CO2	7 M			
		algorithm to perform the task of						
		classification.						
	b)	Apply the classification algorithm to	L2	CO2	7 M			
		classify the image dataset into binary classes						
		of cats and not cats.						

			IIN	IT-III	-					
5	Fyr	olain Linear reg				suitable	L2	CO2	14 M	
	_	mple application.	510551011	VV I CII	а	Sultuole	L3		17 1/1	
	OR									
6	Ext	Explain Logistic regression with a suitable						CO2	14 M	
	-	cample application.								
	example application. L3									
UNIT-IV										
7	a)	a) Explain K-Means clustering algorithm.					L2	CO2	7 M	
	b)	Cluster the follo	wing eig	ht poir	nts	(with (x,	L3	CO2	7 M	
		y) representing locations) into three clusters:								
		A1(2, 10), A2(2, 5), A3(8, 4), A4(5, 8),								
		A5(7, 5), A6(6, 4								
				OR						
8	a)	Describe the alg	orithm fo	or Asso	ocia	tion rule	L2	CO2	7 M	
		mining.								
	b)	Trace the results of using the Apriori					L3	CO2	7 M	
		algorithm on the grocery store example with								
		support threshold s=33.34% and confidence								
		threshold c=60%. Show the candidate and								
		frequent itemsets for each database scan.								
		Enumerate all the final frequent itemsets.								
		Also indicate the association rules that are								
		generated and highlight the strong ones, sort								
		them by confidence.								
		Transaction ID		Item						
		T1	HotDog	s, Buns	s, K	etchup				
		T2	HotDog	-						
		T3	HotDog		e, C	hips				
		T4	Chips, C							
		T5	Chips, Ketchup							
		T6 HotDogs, Coke, Chips								

UNIT-V							
9	Explain about Web Mining and Web Structure	L2	CO3	14 M			
	Mining.						
OR							
10	Explain about Text Mining algorithm and its	L2	CO3	14 M			
	advantages and applications.						